翻訳と辞書
Words near each other
・ WPBA
・ WPBA (TV)
・ WPBC
・ WPBC (disambiguation)
・ WPBF
・ WPBG
・ WPBK
・ WPBM-CD
・ WPBN-TV
・ WPBO
・ WPBP-LP
・ WPBQ
・ WPBR
・ WPBS
・ WPBS (AM)
Wozencraft ensemble
・ WOZI
・ Woziwoda
・ WOZK
・ WOZN
・ WOZN (AM)
・ WOZN-FM
・ Wozniacki
・ WOZQ
・ WOZZ
・ Wozzeck
・ Wozławki
・ Woël
・ Woëvre
・ Wołajowice


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Wozencraft ensemble : ウィキペディア英語版
Wozencraft ensemble

In coding theory, the Wozencraft ensemble is a set of linear codes in which most of codes satisfy the Gilbert-Varshamov bound. It is named after John Wozencraft, who proved its existence. The ensemble is described by , who attributes it to Wozencraft. used the Wozencraft ensemble as the inner codes in his construction of strongly explicit asymptotically good code.
==Existence theorem==

Theorem: Let \varepsilon > 0. For a large enough k, there exists an ensemble of inner codes C_^1,C_^2,..,C_^N of rate \frac, where N = q^k - 1, such that for at least \left( \right)N values of i, C_^i has relative distance \ge H_q^ (\frac - \varepsilon ).
Here relative distance is the ratio of minimum distance to block length. And H_q is the q-ary entropy function defined as follows:
H_q(x) = xlog_q(q-1)-xlog_qx-(1-x)log_q(1-x).
In fact, to show the existence of this set of linear codes, we will specify this ensemble explicitly as follows: for \alpha \in \mathbb_ - \, the inner code C_^\alpha :\mathbb_q^k \to \mathbb_q^, is defined as C_^\alpha (x) = (x,\alpha x). Here we can notice that x \in \mathbb_q^k and \alpha \in \mathbb_. We can do the multiplication \alpha x since \mathbb_q^k is isomorphic to \mathbb_.
This ensemble is due to Wozencraft and is called the Wozencraft ensemble.
For any x and y in \mathbb_q^k, we have the following facts:
# C_^\alpha (x) + C_^\alpha (y) = (x,\alpha x)+(y,\alpha y) = (x + y,\alpha (x + y)) = C_^\alpha (x + y)
# For any a \in F_q, aC_^\alpha (x) = a(x,\alpha x) = \left( \right) = C_^\alpha (ax)
So C_^\alpha is a linear code for every \alpha \in \mathbb_ - \ .
Now we know that Wozencraft ensemble contains linear codes with rate \frac. In the following proof, we will show that there are at least \left( \right)N those linear codes having the relative distance \ge H_q^ (\frac - \varepsilon ), i.e. they meet the Gilbert-Varshamov bound.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Wozencraft ensemble」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.